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Abstract 

Congenital heart illnesses impact roughly 1% of 
newborns, and they are a significant cause of morbidity 
and mortality in a variety of serious situations, including 
progressive heart failure. Phonocardiogram (PCG) 
studies can reveal crucial clinical information about heart 
malfunction caused by congenital and acquired heart 
disease. One of the 23th PhysioNet/Computing in 
Cardiology Challenge 2022 tasks is to develop computer 
tools for detecting the presence or absence of murmurs 
from multiple heart sound recordings from multiple 
auscultation locations. 

Mel spectrograms were generated from up to 30 
seconds per recording and reshaped at input of pre-trained 
AlexNet. The last three layers of AlexNet were modified to 
suit the task as multilabel classification. The database was 
split into 80% for training and 20% for validation. The 
database appeared imbalanced, so the class with small 
number of data entries was oversampled proportionally 
before training. The prepossessing and classifier were 
implemented in Matlab R2022a.  

Team Leicester Fox’s final score in the official phase 
achieved challenge scores of 0.536 for murmur detection 
(ranked at 32/40) and 13844 for outcome prediction 
(ranked at 26/39). Transfer learning and neural networks 
approaches showed potential application for murmurs 
detection using PCG. 

 
1. Introduction 

Congenital heart illnesses impact roughly 1% of 
newborns, and they are a significant cause of morbidity and 
mortality in a variety of serious situations, including 
progressive heart failure [1].  Congenital cardiac disorders 
are predicted to impact about 0.5 million children in East 
Africa alone [2], with around 0.8% of the births affected 
[3]. Diagnosis and treatment of congenital and acquired 
cardiac problems in children is challenging in some 
developing countries, due to a lack of infrastructure and 
cardiac experts in wide geographical regions, as well as 
difficulties in accessing health care. Furthermore, the 

present COVID-19 epidemic complicates clinical 
evaluation of patients by delaying critical in-person 
patient-doctor meetings, which has a detrimental influence 
on screening and monitoring efforts. A non-invasive 
examination of the mechanical function of the heart 
conducted at the point of care can offer early information 
about congenital and acquired cardiac problems in infants.  

Phonocardiogram (PCG), as a non-invasive tool, can 
reveal crucial clinical information about heart malfunction 
caused by congenital and acquired heart disease [4]. This 
is accomplished by detecting aberrant sound waves in the 
PCG signal, often known as heart murmurs. Murmurs are 
irregular waves caused by turbulent blood flow in cardiac 
and vascular tissues. They are linked to particular disorders 
such as septal abnormalities, ductus arteriosus failure in 
infants, and faulty cardiac valves. However, abnormities in 
PCGs are usually detected by experienced clinicians with 
special training on stethoscopes. There has been relatively 
little research on the automated identification of pertinent 
clinical information and diagnosis using PCGs. As the 
PCG is an audio signal, which is inherently one-
dimensional (amplitude over time). Clinical decisions are 
made on hearing the audio by humans. We propose using 
the Mel spectrogram as data input in this work, a 
transformation that reveals the frequency content of the 
signal across time on a scale that is more suitable to 
humans, as we perceive frequency logarithmically [5]. In 
this work, we use transfer learning to develop computer 
tools based on pre-trained neural networks for detecting 
the presence or absence of murmurs from multiple heart 
sound recordings from multiple auscultation locations.  

 
2. Methods 

2.1. Database 

PhysioNet Challenge database [6-8] consists of 942 
patients from one or more prominent auscultation 
locations: pulmonary valve (PV), aortic valve (AV), mitral 
valve (MV), tricuspid valve (TV), and other. For each 
patient, recordings were unified labelled as subject label 
(three classes: present, absent, unknown).  
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2.2. Training Data Labelling  

For each subject, all sound wave files from multiple 
prominent auscultation locations and their corresponding 
labels were identified. As each subject has a unified label 
for both clinical outcome and murmur detection. However, 
for positive class, not all the PCG recordings were 
necessarily labelled as positive. It is believed that some 
positive recordings that were labelled negative or neutral 
may still contain valuable information that were not 
discoverable for human hearing. Therefore, all PCG files 
associated with a positive class were labelled positive, 
regardless of their individual labelling. For negative and 
neutral classes, all PCG files were labelled as negative or 
neutral, which should also be aligned with their individual 
labelling. 

Therefore, from the 942 subjects, we have generated a 
total of 3163 PCG recordings with the above labelling 
logic.  

2.3. Data processing 

As we proposed that heart beats were not annotated, a 
30-second duration was chosen to include enough 
information with sufficient number of heart beats for each 
record.   For PCG records that are longer than 30 seconds, 
data was truncated, whilst data was padded with zero when 
the PCG records are shorter. For each record, the time-
frequency representation was achieved by generating Mel 
spectrogram, which is a spectrogram where the frequencies 
are converted to the Mel scale. The Mel scale provides a 
linear scale for the human auditory system, and is related 
to Hertz using the following formula [9] (eq. 2): 

 

𝑚 = 2595𝑙𝑜𝑔!"(1 +
𝑓
700) 

(2) 

Where f represents frequency in Hertz and m in Mel scale.  
The Mel scale provides a linear scale for the human 
auditory system. This was achieved using the Matlab 
function melSpectrogram with 64 bands within the 
frequency range from 25 Hz to 2000 Hz. The resulting Mel 
Spectrogram graph was then scaled and resized as 227 x 
227 images. Images were saved as a lossless format (.png) 
and Matlab datastores were created for quick access. 

2.4. Imbalance Data  

Out of the 942 subjects, 179 were positive class, 695 
were negative and 68 were neutral, with each subject 
consisting 1-6 recordings. 

The database appeared imbalanced, and the classes 
(positive and neutral) with small number of data entries 
were oversampled proportionally before training using 
Matlab implementation python library imbalanced-learn 

[10]. Let 𝒳 be an imbalanced dataset with 𝒳#$% and  𝒳#&' 
the subset of samples belonging to the minority and 
majority class, respectively. The balancing ratio of the 
dataset is defined as (eq. 1): 

 

𝑟𝒳 =
|𝒳#$%|
3𝒳#&'3

 (1) 

 
The balancing process is equivalent to resampling  into a 
new dataset 𝒳)*+ such that 𝑟𝒳 > 𝑟𝒳!"#. Data balancing can 
be performed by oversampling such that new samples are 
generated in 𝒳#$% reach the balancing ratio 𝑟𝒳!"# [10]. 

2.5. Data Augmentation 

For each PCG record, data was augmented by left and 
right shifting a small instance (Figure 1). Also, three levels 
of Gaussian noises (amplitude with 0.5-, 1- and 1.5-times 
standard deviation) were added to the signal to model 
different signal-to-noise ratio scenarios. 

 
Figure 1. Left: example of an original PCG waveform, and 
the Mel spectrogram with time shifts; Right: example of 
the waveform of original PCG with added noise, and their 
corresponding Mel spectrogram with time shifts. 

2.6. Model Architecture 

Each Mel Spectrogram graph was converted to a 227 x 227 
x3 image with equal weight to RGB channels. This was 
then fed into a pre-trained AlexNet [11], which includes 
eight layers with learnable parameters. Relu activation is 
used in each of the five levels of the model, with the 
exception of the output layer, which uses max pooling 
followed by three fully connected layers. The last a few 
layers were modified to suit the tasks of Murmur detection 
and clinical diagnostic (Figure 2).  

2.5. Model Training 
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Training and classification were implemented in Matlab 
environment using a single GPU. Models were trained on 
80 % of data as a training set, and the accuracy was 
evaluated on 20 % of data as a validation set. Both neural 
networks were trained for 30 epochs with mini-batch size 
of 64 samples, where each epoch was shuffled. The neural 
networks apply the Adam optimization method with 
learning rate set to 0.0001. Lost function of sparse 
categorical cross-entropy (eq. 3) was used with accuracy 

as evaluation metric. The cross-entropy function was the 
objective function to be optimised during the model 
training process as follows: 
 

 

𝐿(𝑋, 𝑟) = −
1
𝑚9𝑙𝑜𝑔,(𝑅 = 𝑟$|𝑋)

#

$-!

 (3) 

 
 

 
Figure 2. Graphical diagram illustrating the architecture of the modified pre-trained AlexNet.

 
3. Results 

Our”Leicester Fox” team successfully ran all 5 entries 
in the unofficial phase. Our best entry for the unofficial 
phase of the PhysioNet/CinC 2022 competition received a 
Challenge Score of 539.591 on full data, ranking at 13th 
out of 166. 

In the official phase, we have modified our unofficial 
model to accommodate the new task of outcome detection. 
Our final score on the full dataset in the official phase 
achieved challenge scores of 0.536 for murmur detection 
and 13844 for outcome prediction (Table 1 and 2). Figure 
3 demonstrates the training process of both murmur model 
and the outcome model respectively.   

 

Training Validation Test Ranking 
0.825 0.502 0.536 32/40 

Table 1. Weighted accuracy metric scores (official 
Challenge score) for our final selected entry (team 
Leicester Fox) for the murmur detection task, including the 
ranking of our team on the hidden test set. We used 5-fold 
cross validation on the public training set, repeated scoring 
on the hidden validation set, and one-time scoring on the 
hidden test set. 

Training Validation Test Ranking 
6256 13825 13844 26/39 

Table 2. Cost metric scores (official Challenge score) for 
our final selected entry (team Leicester Fox) for the clinical 
outcome identification task, including the ranking of our 
team on the hidden test set. We used 5-fold cross validation 
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on the public training set, repeated scoring on the hidden 
validation set, and one-time scoring on the hidden test set. 

In total, we have submitted three entries (Table 3) with 
different configurations.  

Entries Changes Score 
murmur 

Score 
outcome 

1 oversample + time shift 0.478 13825 
2 no oversample + time shift 0.502 15162 
3 oversample(outcome) + time 

shift + added noise 
0.367 18899 

Table 3. Challenge Scores for official entries 

 
Figure 3. Training Loss and Accuracy per epoch on 
training and validation set. Top: Murmur model; Bottom; 
clinical outcome model. 
 
4. Discussion and Conclusions 

Our first entry was using oversampling mentioned in 
Section 2.4, and time shift for data augmentation. This 
entry achieved the best outcome score (the lower the 
better). However, without oversample in entry 2, the 
murmur score achieved the best result, which may be due 
to a similar class distribution in unseen testing dataset 
withhold by the organizers. Data augmentation by adding 
additional noise at different levels worsened the final 
score, which may suggest unreal noise modelling. Transfer 
learning and neural networks approaches showed potential 
application for murmurs detection using PCG. Future work 
is required to improve the model accuracy.  
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